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ABSTRACT
we search for three distinct polynomials with integer co-efficients such that the sum of any two added with
either an arbitrary integer or a polynomial with integer co-efficients is a perfect square of a polynomial with
integer co-efficients
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I. INTRODUCTION

The problem of constructing the set with property that the product of any two of its distinct elements is one less
than a square has a very long history and such sets were studied by Diophantus[1]. A set of m non-zero distinct
positive integers }......,{ 21 maaa is called Diophantine if 1jiaa , a perfect square and such a set is said

to be a Diophantine m-tuples with property D(1). Diophantus found the first Diophantine quadruple of rational

numbers }
16
105,

4
17,

16
33,

16
1{ [1] while the first set of four positive integers with the above property was

found by Fermat and it was }120,8,3,1{ . Euler gave the solution )})((4,2,,{ brarrrbaba  where
21 rba  [2]. Many mathematicians considered the problem of the existence of Diophantine quadruples

with the property D(n) for any arbitrary integer n [3-9] and also for any non-zero polynomials in n with integer
coefficients[ 10-16 ] Many generalizations of this problem were considered since antiquity for example, by
adding a fixed integer n instead of 1, looking at thk powers instead of squares or considering the problems
over domains other than Z or Q. For an extensive review of various articles on Diophantine m-tuples, one may
refer the website http:// web.math.pmf.unizg.hr/~duje/ref.html. These results motivated us for determining
polynomial triples with integer coefficients such that the sum of any two added with either an arbitrary integer
or a polynomial with integer coefficients is a perfect square of a polynomial with integer coefficients

II. SECTION:1 DIOPHANTINE TRIPLE USING PYTHAGOREAN SOLUTION
Let and be two rational numbers where x and z represent a leg and

hypotenuse of the Pythagorean triangle

Now (say)

Therefore the pair is a rational Diophantine two-tuple with property

Let c be any non-zero rational number such that
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from which we get

Thus, the triple is a rational Diophantine three- tuple with property
Since

note that the above triple (a,b,c) is a strong rational Diophantine triple as the product of any
two members of the triple added with is a perfect square.
Now, consider the pair which is a rational Diophantine two tuple with property .
Applying Euler’s formula, it is seen that the triple is a strong rational Diophantine

three tuple with property ,where . The repetition of the above process

leads to the generation of sequence of strong rational Diophantine triples with property

A few numerical examples are presented in the table:

x y z k

4 3 5 1

3 4 5 2

12 5 13 2

5 12 13 3

III. SECTION:2 DIOPHANTINE TRIPLE USING SOLUTIONS OF ELLIPTIC
PARABOLOID

Let , be two rational numbers where satisfies the elliptic

paraboloid z

Now, (say)

Therefore, the pair is a rational Diophantine two-tuple with property
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Following the analysis similar to section:1, the corresponding strong rational Diophantine
triples

, , ……………..with property are given by

………………

A few numerical examples are presented below:

x y z k

2 3 1
3

1

3 5 3
4

2

4 6 5
2

1

1 4 1
7

2

NOTE: It is worth to note that the above sequence of triples may be represented in general

form as the triple where
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IV. CONCLUSION
In this paper, polynomial triples with special numbers as members are constructed such that the sum of any two
members of the triple added with either an integer or a polynomial is a perfect square of polynomial with integer
coefficients. Since numbers are rich in variety, one may search for polynomial triples with higher order number
patterns.
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